Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
1.
Theranostics ; 14(5): 1794-1814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505609

RESUMO

Rationale: The acoustic stimulation of microbubbles within microvessels can elicit a spectrum of therapeutically relevant bioeffects from permeabilization to perfusion shutdown. These bioeffects ultimately arise from complex interactions between microbubbles and microvascular walls, though such interactions are poorly understood particularly at high pressure, due to a paucity of direct in vivo observations. The continued development of focused ultrasound methods hinges in large part on establishing links between microbubble-microvessel interactions, cavitation signals, and bioeffects. Methods: Here, a system was developed to enable simultaneous high-speed intravital imaging and cavitation monitoring of microbubbles in vivo in a chorioallantoic membrane model. Exposures were conducted using the clinical agent DefinityTM under conditions previously associated with microvascular damage (1 MHz, 0.5-3.5 MPa, 5 ms pulse length). Results: Ultrasound-activated microbubbles could be observed and were found to induce localized wall deformations that were more pronounced in smaller microvessels and increased with pressure. A central finding was that microbubbles could extravasate from microvessels (from 34% of vessels at 1 MPa to 79% at 3 MPa) during insonation (94% within 0.5 ms) and that this occurred more frequently and in progressively larger microvessels (up to 180 µm) as pressure was increased. Following microbubble extravasation, transient or sustained red blood cell leakage ensued at the extravasation site in 96% of cases for pressures ≥1 MPa. Conclusions: The results here represent the first high-speed in vivo investigation of high-pressure focused ultrasound-induced microbubble-microvessel interactions. This data provides direct evidence that the process of activated microbubble extravasation can occur in vivo and that it is linked to producing microvessel wall perforations of sufficient size to permit red blood cell leakage. The association of red blood cell leakage with microbubble extravasation provides mechanistic insight into the process of microvessel rupture, which has been widely observed in histology.


Assuntos
Membrana Corioalantoide , Microbolhas , Animais , Microscopia , Ultrassonografia/métodos , Microscopia Intravital
2.
ACS Nano ; 18(9): 7098-7113, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38343099

RESUMO

Nanoparticles have been employed to elucidate the innate immune cell biology and trace cells accumulating at inflammation sites. Inflammation prompts innate immune cells, the initial responders, to undergo rapid turnover and replenishment within the hematopoietic bone marrow. Yet, we currently lack a precise understanding of how inflammation affects cellular nanoparticle uptake at the level of progenitors of innate immune cells in the hematopoietic marrow. To bridge this gap, we aimed to develop imaging tools to explore the uptake dynamics of fluorescently labeled cross-linked iron oxide nanoparticles in the bone marrow niche under varying degrees of inflammation. The inflammatory models included mice that received intramuscular lipopolysaccharide injections to induce moderate inflammation and streptozotocin-induced diabetic mice with additional intramuscular lipopolysaccharide injections to intensify inflammation. In vivo magnetic resonance imaging (MRI) and fluorescence imaging revealed an elevated level of nanoparticle uptake at the bone marrow as the levels of inflammation increased. The heightened uptake of nanoparticles within the inflamed marrow was attributed to enhanced permeability and retention with increased nanoparticle intake by hematopoietic progenitor cells. Moreover, intravital microscopy showed increased colocalization of nanoparticles within slowly patrolling monocytes in these inflamed hematopoietic marrow niches. Our discoveries unveil a previously unknown role of the inflamed hematopoietic marrow in enhanced storage and rapid deployment of nanoparticles, which can specifically target innate immune cells at their production site during inflammation. These insights underscore the critical function of the hematopoietic bone marrow in distributing iron nanoparticles to innate immune cells during inflammation. Our findings offer diagnostic and prognostic value, identifying the hematopoietic bone marrow as an imaging biomarker for early detection in inflammation imaging, advancing personalized clinical care.


Assuntos
Diabetes Mellitus Experimental , Nanopartículas , Animais , Camundongos , Medula Óssea/diagnóstico por imagem , Lipopolissacarídeos , Diabetes Mellitus Experimental/patologia , Inflamação/diagnóstico por imagem , Inflamação/patologia
3.
Cells ; 13(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38391962

RESUMO

Optimising drug delivery to tumours remains an obstacle to effective cancer treatment. A prerequisite for successful chemotherapy is that the drugs reach all tumour cells. The vascular network of tumours, extravasation across the capillary wall and penetration throughout the extracellular matrix limit the delivery of drugs. Ultrasound combined with microbubbles has been shown to improve the therapeutic response in preclinical and clinical studies. Most studies apply microbubbles designed as ultrasound contrast agents. Acoustic Cluster Therapy (ACT®) is a novel approach based on ultrasound-activated microbubbles, which have a diameter 5-10 times larger than regular contrast agent microbubbles. An advantage of using such large microbubbles is that they are in contact with a larger part of the capillary wall, and the oscillating microbubbles exert more effective biomechanical effects on the vessel wall. In accordance with this, ACT® has shown promising therapeutic results in combination with various drugs and drug-loaded nanoparticles. Knowledge of the mechanism and behaviour of drugs and microbubbles is needed to optimise ACT®. Real-time intravital microscopy (IVM) is a useful tool for such studies. This paper presents the experimental setup design for visualising ACT® microbubbles within the vasculature of tumours implanted in dorsal window (DW) chambers. It presents ultrasound setups, the integration and alignment of the ultrasound field with the optical system in live animal experiments, and the methodologies for visualisation and analysing the recordings. Dextran was used as a fluorescent marker to visualise the blood vessels and to trace drug extravasation and penetration into the extracellular matrix. The results reveal that the experimental setup successfully recorded the kinetics of extravasation and penetration distances into the extracellular matrix, offering a deeper understanding of ACT's mechanisms and potential in localised drug delivery.


Assuntos
Neoplasias , Animais , Ultrassonografia , Neoplasias/tratamento farmacológico , Acústica , Meios de Contraste , Microscopia Intravital
4.
Proc Natl Acad Sci U S A ; 121(8): e2303119121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38349880

RESUMO

Coupling red blood cell (RBC) supply to O2 demand is an intricate process requiring O2 sensing, generation of a stimulus, and signal transduction that alters upstream arteriolar tone. Although actively debated, this process has been theorized to be induced by hypoxia and to involve activation of endothelial inwardly rectifying K+ channels (KIR) 2.1 by elevated extracellular K+ to trigger conducted hyperpolarization via connexin40 (Cx40) gap junctions to upstream resistors. This concept was tested in resting healthy skeletal muscle of Cx40-/- and endothelial KIR2.1-/- mice using state-of-the-art live animal imaging where the local tissue O2 environment was manipulated using a custom gas chamber. Second-by-second capillary RBC flow responses were recorded as O2 was altered. A stepwise drop in PO2 at the muscle surface increased RBC supply in capillaries of control animals while elevated O2 elicited the opposite response; capillaries were confirmed to express Cx40. The RBC flow responses were rapid and tightly coupled to O2; computer simulations did not support hypoxia as a driving factor. In contrast, RBC flow responses were significantly diminished in Cx40-/- mice. Endothelial KIR2.1-/- mice, on the other hand, reacted normally to O2 changes, even when the O2 challenge was targeted to a smaller area of tissue with fewer capillaries. Conclusively, microvascular O2 responses depend on coordinated electrical signaling via Cx40 gap junctions, and endothelial KIR2.1 channels do not initiate the event. These findings reconceptualize the paradigm of blood flow regulation in skeletal muscle and how O2 triggers this process in capillaries independent of extracellular K+.


Assuntos
Capilares , Oxigênio , Animais , Camundongos , Capilares/fisiologia , 60544/metabolismo , Junções Comunicantes/metabolismo , Hipóxia/metabolismo , Músculo Esquelético/metabolismo , Oxigênio/metabolismo
5.
Methods Mol Biol ; 2773: 125-135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38236542

RESUMO

Intravital microscopy allows a direct visualization of cells' behavior in their environment in a living organism with all its complexity. With appropriated models, longitudinal studies of structural and functional changes can be followed in the same animal on long period. In the field of cancer, the dorsal window chamber model is the model of choice for tumor events such as cells migration, vessels growth, and their permeability or interactions between cells and vessels. Coupled with wide-field, confocal, or multiphoton fluorescence microscopes, high spatial and temporal resolutions of the cellular events can be analyzed in vivo.


Assuntos
Microscopia Intravital , Microscopia de Fluorescência por Excitação Multifotônica , Animais , Movimento Celular , Permeabilidade
6.
Biol Reprod ; 110(2): 365-376, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37971359

RESUMO

The implementation of live imaging in reproductive research is crucial for studying the physiological dynamics. Sperm transport is a highly dynamic process regulated by tubular contractions and luminal flows within the male reproductive tract. However, due to the lack of imaging techniques to capture these dynamics in vivo, there is little information on the physiological and biomechanical regulation of sperm transport through the male reproductive tract. Here, we present a functional in vivo imaging approach using optical coherence tomography, enabling live, label-free, depth-resolved, three-dimensional, high-resolution visualization of the mouse testis and epididymis. With this approach, we spatiotemporally captured tubular contractility in mouse testis and epididymis, as well as microstructures of these reproductive organs. Our findings demonstrated that the contraction frequency varies significantly depending on the epididymal regions, suggesting the spatial regulation of epididymal contractility. Furthermore, we implemented quantitative measurements of the contraction wave and luminal transport through the epididymal duct, revealing the physiological dynamics within the male reproductive tract. The results show that the contraction wave propagates along the epididymal duct and the wave propagation velocity was estimated in vivo. In conclusion, this is the first study to develop in vivo dynamic volumetric imaging of the male reproductive tract, which allows for quantitative analysis of the dynamics associated with sperm transport. This study sets a platform for various studies investigating normal and abnormal male reproductive physiology as well as the pharmacological and environmental effects on reproductive functions in mouse models, ultimately contributing to a comprehensive understanding of male reproductive disorders.


Assuntos
Epididimo , Testículo , Camundongos , Animais , Masculino , Epididimo/diagnóstico por imagem , Epididimo/fisiologia , Testículo/diagnóstico por imagem , Tomografia de Coerência Óptica , Sêmen , Espermatozoides
7.
Methods Mol Biol ; 2747: 211-227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38038943

RESUMO

Hematopoiesis is the process through which all mature blood cells are formed and takes place in the bone marrow (BM). Acute myeloid leukemia (AML) is a blood cancer of the myeloid lineage. AML progression causes drastic remodeling of the BM microenvironment, making it no longer supportive of healthy hematopoiesis and leading to clinical cytopenia in patients. Understanding the mechanisms by which AML cells shape the BM to their benefit would lead to the development of new therapeutic strategies. While the role of extracellular matrix (ECM) in solid cancer has been extensively studied during decades, its role in the BM and in leukemia progression has only begun to be acknowledged. In this context, intravital microscopy (IVM) gives the unique insight of direct in vivo observation of AML cell behavior in their environment during disease progression and/or upon drug treatments. Here we describe our protocol for visualizing and analyzing MLL-AF9 AML cell dynamics upon systemic inhibition of matrix metalloproteinases (MMP), combining confocal and two-photon microscopy and focusing on cell migration.


Assuntos
Medula Óssea , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Metaloproteinases da Matriz , Microscopia Intravital , Movimento Celular , Microambiente Tumoral
8.
Arq. bras. oftalmol ; 87(3): e2022, 2024. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1550036

RESUMO

ABSTRACT Purpose: This study aimed to investigate the effect of upper eyelid blepharoplasty with the removal of the skin and a strip of orbicularis oculi muscle on the ocular surface, tear film, and dry eye-related symptoms. Methods: Twenty-two eyes of 22 consecutive patients operated by a single surgeon (21 females; mean age, 61 years; age range, 41-75 years) were included. All subjects completed the Ocular Surface Disease Index questionnaire, underwent in vivo confocal microscopy, tear film breakup time measurements, the Schirmer test with anesthesia, and fluorescein and lissamine green staining measurements before, 1 month, and 6 months after upper blepharoplasty alone with preseptal orbicularis excision. Results: A significant increase in Ocular Surface Disease Index, and corneal fluorescein and lissamine green staining and a significant decrease in tear film breakup time were observed after 1 month (p=0.003, p=0.004, p=0.029, and p=0.024 respectively) and 6 months (p=0.001 for all findings). No significant difference in the Schirmer test score was observed during the follow-up. None of the in vivo confocal microscopy parameters showed significant changes during the study. Conclusions: An increase in dry eye symptoms and a decrease in tear film stability along with ocular surface staining were observed in patients undergoing upper eyelid blepharoplasty.

9.
Cell Rep ; 42(12): 113501, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38039128

RESUMO

Upon proinflammatory challenges, endothelial cell surface presentation of the leukocyte receptor P-selectin, together with the stabilizing co-factor CD63, is needed for leukocyte capture and is mediated via demand-driven exocytosis from the Weibel-Palade bodies that fuse with the plasma membrane. We report that neutrophil recruitment to activated endothelium is significantly reduced in mice deficient for the endolysosomal cation channel TPC2 and in human primary endothelial cells with pharmacological TPC2 block. We observe less CD63 signal in whole-mount stainings of proinflammatory-activated cremaster muscles from TPC2 knockout mice. We find that TPC2 is activated and needed to ensure the transfer of CD63 from endolysosomes via Weibel-Palade bodies to the plasma membrane to retain P-selectin on the cell surface of human primary endothelial cells. Our findings establish TPC2 as a key element to leukocyte interaction with the endothelium and a potential pharmacological target in the control of inflammatory leukocyte recruitment.


Assuntos
Selectina-P , Camundongos , Humanos , Animais , Selectina-P/metabolismo , Células Endoteliais/metabolismo , Corpos de Weibel-Palade/metabolismo , Adesão Celular , Leucócitos/metabolismo , Endotélio Vascular/metabolismo
10.
Small ; : e2306726, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38152951

RESUMO

Polylactide-co-glycolide (PLG) nanoparticles hold immense promise for cancer therapy due to their enhanced efficacy and biodegradable matrix structure. Understanding their interactions with blood cells and subsequent biodistribution kinetics is crucial for optimizing their therapeutic potential. In this study, three doxorubicin-loaded PLG nanoparticle systems are synthesized and characterized, analyzing their size, zeta potential, morphology, and in vitro release behavior. Employing intravital microscopy in 4T1-tumor-bearing mice, real-time blood and tumor distribution kinetics are investigated. A mechanistic pharmacokinetic model is used to analyze biodistribution kinetics. Additionally, flow cytometry is utilized to identify cells involved in nanoparticle hitchhiking. Following intravenous injection, PLG nanoparticles exhibit an initial burst release (<1 min) and rapidly adsorb to blood cells (<5 min), hindering extravasation. Agglomeration leads to the clearance of one carrier species within 3 min. In stable dispersions, drug release rather than extravasation remains the dominant pathway for drug elimination from circulation. This comprehensive investigation provides valuable insights into the interplay between competing kinetics that influence the lifecycle of PLG nanoparticles post-injection. The findings advance the understanding of nanoparticle behavior and lay the foundation for improved cancer therapy strategies using nanoparticle-based drug delivery systems.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37980655

RESUMO

BACKGROUND: Pentobarbital and isoflurane are commonly used veterinary anesthetics. Due to the dangers of overdose by repeat-bolus regimen of pentobarbital, isoflurane has been recommended. However, literature suggests isoflurane-induced inhibition of cytokine and adhesion molecule release, impacting leukocyte adhesion. OBJECTIVE: This study aims to characterize the impacts of pentobarbital versus isoflurane on leukocyte interactions within the intestinal microcirculation with and without endotoxin challenge. METHODS: Female BALB/c mice were subjected to pentobarbital or isoflurane (N = 20) and challenged with endotoxin or saline by intraperitoneal injection. The mice were kept under anesthesia for 2 hours. Fluorochromes, rhodamine-6 G and fluorescein isothiocyanate, were injected intravenously. To visualize leukocyte adhesion within the intestinal microcirculation, laparotomy and intravital microscopy was performed. Leukocyte rolling and adhesion was quantified offline in a blinded fashion. RESULTS: Within collecting venules, leukocyte rolling and adhesion showed no significant differences between pentobarbital and isoflurane anesthesia under basal conditions. Endotoxin challenge caused a similar response in both anesthetic groups. Within postcapillary venules, no statistical differences between the two anesthetics were found for adhering leukocytes under basal conditions or following endotoxin challenge either. However, leukocyte rolling after LPS-challenge was significantly decreased in postcapillary venules during isoflurane anesthesia compared to pentobarbital anesthesia. CONCLUSIONS: Isoflurane anesthesia showed only minor differences in the immune response to endotoxin within the intestinal microcirculation compared to pentobarbital anesthesia. Due to the superior safety profile of volatile anesthetics, immunological studies may choose isoflurane over pentobarbital as the veterinary anesthetic of choice.

12.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38004431

RESUMO

Insufficient drug accumulation in tumors is still a major concern for using cancer nanotherapeutics. Here, the neutrophil-based delivery of three nanoparticle types-liposomes, PLGA, and magnetite nanoparticles-was assessed both in vitro and in vivo. Confocal microscopy and a flow cytometry analysis demonstrated that all the studied nanoparticles interacted with neutrophils from the peripheral blood of mice with 4T1 mammary adenocarcinoma without a significant impact on neutrophil viability or activation state. Intravital microscopy of the tumor microenvironment showed that the neutrophils did not engulf the liposomes after intravenous administration, but facilitated nanoparticle extravasation in tumors through micro- and macroleakages. PLGA accumulated along the vessel walls in the form of local clusters. Later, PLGA nanoparticle-loaded neutrophils were found to cross the vascular barrier and migrate towards the tumor core. The magnetite nanoparticles extravasated in tumors both via spontaneous macroleakages and on neutrophils. Overall, the specific type of nanoparticles largely determined their behavior in blood vessels and their neutrophil-mediated delivery to the tumor. Since neutrophils are the first to migrate to the site of inflammation, they can increase nanodrug delivery effectiveness for nanomedicine application.

13.
Front Immunol ; 14: 1257497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954606

RESUMO

Introduction: Opening occluded coronary arteries in patients with myocardial infarction (MI) damages the delicate coronary microvessels through a process called myocardial ischaemia-reperfusion injury. Although mesenchymal stromal cells (MSCs) have the potential to limit this injury, clinical success remains limited. This may be due to (i) poor MSC homing to the heart (ii) infused MSCs, even if derived from the same site, being a heterogeneous population with varying therapeutic efficacy and (iii) conventional 2D culture of MSCs decreasing their homing and beneficial properties. This study investigated whether 3D culture of two distinctly different bone marrow (BM)-derived MSC sub-populations could improve their homing and coronary vasculoprotective efficacy. Methods: Intravital imaging of the anaesthetised mouse beating heart was used to investigate the trafficking and microvascular protective effects of two clonally-derived BM-derived MSC lines, namely CD317neg MSCs-Y201 and CD317pos MSCs-Y202, cultured using conventional monolayer and 3D hanging drop methods. Results: 3D culture consistently improved the adhesive behaviour of MSCs-Y201 to various substrates in vitro. However, it was their differential ability to reduce neutrophil events within the coronary capillaries and improve ventricular perfusion in vivo that was most remarkable. Moreover, dual therapy combined with heparin further improved the vasculoprotection afforded by 3D cultured MSCs-Y201 by also modifying platelet as well as neutrophil recruitment, which subsequently led to the greatest salvage of viable myocardium. Therapeutic benefit could mechanistically be explained by reductions in coronary endothelial oxidative stress and intercellular adhesion molecule-1 (ICAM-1)/vascular cell adhesion molecule-1 (VCAM-1) expression. However, since this was noted by both 2D and 3D cultured MSCs-Y201, therapeutic benefit is likely explained by the fact that 3D cultured MSCs-Y201 were the most potent sub-population at reducing serum levels of several pro-inflammatory cytokines. Conclusion: This novel study highlights the importance of not only 3D culture, but also of a specific CD317neg MSC sub-population, as being critical to realising their full coronary vasculoprotective potential in the injured heart. Since the smallest coronary blood vessels are increasingly recognised as a primary target of reperfusion injury, therapeutic interventions must be able to protect these delicate structures from inflammatory cells and maintain perfusion in the heart. We propose that relatively feasible technical modifications in a specific BM-derived MSC sub-population could achieve this.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Humanos , Heparina/farmacologia , Heparina/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Traumatismo por Reperfusão Miocárdica/terapia , Traumatismo por Reperfusão Miocárdica/metabolismo , Microvasos
14.
Cell Surf ; 10: 100113, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37954640

RESUMO

Multiple blood-borne pathogens infecting mammals establish close interactions with the host vascular endothelium as part of their life cycles. In this work, we investigate differences in the interactions of three Trypanosoma species: T. brucei, T. congolense and T. vivax with the blood vasculature. Infection with these species results in vastly different pathologies, including different effects on vascular homeostasis, such as changes in vascular permeability and microhemorrhages. While all three species are extracellular parasites, T. congolense is strictly intravascular, while T. brucei is capable of surviving both extra- and intravascularly. Our knowledge regarding T. vivax tropism and its capacity of migration across the vascular endothelium is unknown. In this work, we show for the first time that T. vivax parasites sequester to the vascular endothelium of most organs, and that, like T. congolense, T. vivax Y486 is largely incapable of extravasation. Infection with this parasite species results in a unique effect on vascular endothelium receptors including general downregulation of ICAM1 and ESAM, and upregulation of VCAM1, CD36 and E-selectin. Our findings on the differences between the two sequestering species (T. congolense and T. vivax) and the non-sequestering, but extravasating, T. brucei raise important questions on the relevance of sequestration to the parasite's survival in the mammalian host, and the evolutionary relevance of both sequestration and extravasation.

15.
Cells ; 12(19)2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37830625

RESUMO

Platelets are generated by specialized cells called megakaryocytes (MKs). However, MK's origin and platelet release mode have remained incompletely understood. Here, we established direct visualization of embryonic thrombopoiesis in vivo by combining multiphoton intravital microscopy (MP-IVM) with a fluorescence switch reporter mouse model under control of the platelet factor 4 promoter (Pf4CreRosa26mTmG). Using this microscopy tool, we discovered that fetal liver MKs provide higher thrombopoietic activity than yolk sac MKs. Mechanistically, fetal platelets were released from MKs either by membrane buds or the formation of proplatelets, with the former constituting the key process. In E14.5 c-Myb-deficient embryos that lack definitive hematopoiesis, MK and platelet numbers were similar to wild-type embryos, indicating the independence of embryonic thrombopoiesis from definitive hematopoiesis at this stage of development. In summary, our novel MP-IVM protocol allows the characterization of thrombopoiesis with high spatio-temporal resolution in the mouse embryo and has identified membrane budding as the main mechanism of fetal platelet production.


Assuntos
Microscopia , Trombopoese , Camundongos , Animais , Plaquetas , Megacariócitos , Contagem de Plaquetas
16.
bioRxiv ; 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37662387

RESUMO

All mammalian organs depend upon resident macrophage populations to coordinate repair processes and facilitate tissue-specific functions1-3. Recent work has established that functionally distinct macrophage populations reside in discrete tissue niches and are replenished through some combination of local proliferation and monocyte recruitment4,5. Moreover, decline in macrophage abundance and function in tissues has been shown to contribute to many age-associated pathologies, such as atherosclerosis, cancer, and neurodegeneration6-8. Despite these advances, the cellular mechanisms that coordinate macrophage organization and replenishment within an aging tissue niche remain largely unknown. Here we show that capillary-associated macrophages (CAMs) are selectively lost over time, which contributes to impaired vascular repair and tissue perfusion in older mice. To investigate resident macrophage behavior in vivo, we have employed intravital two-photon microscopy to non-invasively image in live mice the skin capillary plexus, a spatially well-defined model of niche aging that undergoes rarefication and functional decline with age. We find that CAMs are lost with age at a rate that outpaces that of capillary loss, leading to the progressive accumulation of capillary niches without an associated macrophage in both mice and humans. Phagocytic activity of CAMs was locally required to repair obstructed capillary blood flow, leaving macrophage-less niches selectively vulnerable to both homeostatic and injury-induced loss in blood flow. Our work demonstrates that homeostatic renewal of resident macrophages is not as finely tuned as has been previously suggested9-11. Specifically, we found that neighboring macrophages do not proliferate or reorganize sufficiently to maintain an optimal population across the skin capillary niche in the absence of additional cues from acute tissue damage or increased abundance of growth factors, such as colony stimulating factor 1 (CSF1). Such limitations in homeostatic renewal and organization of various niche-resident cell types are potentially early contributors to tissue aging, which may provide novel opportunities for future therapeutic interventions.

17.
Oral Oncol ; 146: 106575, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37741020

RESUMO

Intravital microscopy (IVM) and optical coherency tomography (OCT) are powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. They have been used in preclinical and clinical cancer imaging, providing insights into the complex physiological, cellular, and molecular behaviors of tumors. They have revolutionized cancer diagnosis and therapies, allowing for real-time observation of biologic processes in vivo, including angiogenesis and immune cell interactions. Recent developments in techniques for observing deep tissues of living animals have improved bioluminescent proteins, fluorescent proteins, fluorescent dyes, and detection technologies like two-photon excitation microscopy. These technologies have become indispensable tools in basic sciences, preclinical research, and modern drug development. In Vivo imaging can detect subcellular signaling or metabolic events in living animals, but depth-dependent signal attenuation limits the depth from which significant data can be obtained. Cancer cell motility and invasion are key features of metastatic tumors, but only a small portion of tumor cells are motile and metastasize due to genetic, epigenetic, and microenvironmental heterogeneities.


Assuntos
Neoplasias de Cabeça e Pescoço , Microscopia Intravital , Animais , Humanos , Microscopia de Fluorescência/métodos , Microscopia Intravital/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/terapia , Tomografia de Coerência Óptica , Comunicação Celular
18.
Geroscience ; 45(5): 2983-3002, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37642933

RESUMO

Whole brain irradiation (WBI), a commonly employed therapy for multiple brain metastases and as a prophylactic measure after cerebral metastasis resection, is associated with a progressive decline in neurocognitive function, significantly impacting the quality of life for approximately half of the surviving patients. Recent preclinical investigations have shed light on the multifaceted cerebrovascular injury mechanisms underlying this side effect of WBI. In this study, we aimed to test the hypothesis that WBI induces endothelial senescence, contributing to chronic disruption of the blood-brain barrier (BBB) and microvascular rarefaction. To accomplish this, we utilized transgenic p16-3MR mice, which enable the identification and selective elimination of senescent cells. These mice were subjected to a clinically relevant fractionated WBI protocol (5 Gy twice weekly for 4 weeks), and cranial windows were applied to both WBI-treated and control mice. Quantitative assessment of BBB permeability and capillary density was performed using two-photon microscopy at the 6-month post-irradiation time point. The presence of senescent microvascular endothelial cells was assessed by imaging flow cytometry, immunolabeling, and single-cell RNA-sequencing (scRNA-seq). WBI induced endothelial senescence, which associated with chronic BBB disruption and a trend for decreased microvascular density in the mouse cortex. In order to investigate the cause-and-effect relationship between WBI-induced senescence and microvascular injury, senescent cells were selectively removed from animals subjected to WBI treatment using Navitoclax/ABT263, a well-known senolytic drug. This intervention was carried out at the 3-month post-WBI time point. In WBI-treated mice, Navitoclax/ABT263 effectively eliminated senescent endothelial cells, which was associated with decreased BBB permeability and a trend for increased cortical capillarization. Our findings provide additional preclinical evidence that senolytic treatment approaches may be developed for prevention of the side effects of WBI.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Humanos , Camundongos , Animais , Qualidade de Vida , Senoterapia , Encéfalo/irrigação sanguínea , Senescência Celular
19.
Bio Protoc ; 13(14): e4720, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37497460

RESUMO

Intestinal intraepithelial lymphocytes (IEL) are a numerous population of T cells located within the epithelium of the small and large intestines, being more numerous in the small intestine (SI). They surveil this tissue by interacting with epithelial cells. Intravital microscopy is an important tool for visualizing the patrolling activity of IEL in the SI of live mice. Most IEL express CD8α; therefore, here we describe an established protocol of intravital imaging that tracks lymphocytes labeled with a CD8α-specific monoclonal antibody in the SI epithelium of live mice. We also describe data acquisition and quantification of the movement metrics, including mean speed, track length, displacement length, and paths for each CD8α+ IEL using the available software. The intravital imaging technique for measuring IEL movement will provide a better understanding of the role of IEL in homeostasis and protection from injury or infection in vivo.

20.
Immune Netw ; 23(3): e27, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37416934

RESUMO

Neutrophil extracellular traps (NETs) exert a novel function of trapping pathogens. Released NETs can accumulate in inflamed tissues, be recognized by other immune cells for clearance, and lead to tissue toxicity. Therefore, the deleterious effect of NET is an etiological factor, causing several diseases directly or indirectly. NLR family pyrin domain containing 3 (NLRP3) in neutrophils is pivotal in signaling the innate immune response and is associated with several NET-related diseases. Despite these observations, the role of NLRP3 in NET formation in neuroinflammation remains elusive. Therefore, we aimed to explore NET formation promoted by NLRP3 in an LPS-induced inflamed brain. Wild-type and NLRP3 knockout mice were used to investigate the role of NLRP3 in NET formation. Brain inflammation was systemically induced by administering LPS. In such an environment, the NET formation was evaluated based on the expression of its characteristic indicators. DNA leakage and NET formation were analyzed in both mice through Western blot, flow cytometry, and in vitro live cell imaging as well as two-photon imaging. Our data revealed that NLRP3 promotes DNA leakage and facilitates NET formation accompanied by neutrophil death. Moreover, NLRP3 is not involved in neutrophil infiltration but is predisposed to boost NET formation, which is accompanied by neutrophil death in the LPS-induced inflamed brain. Furthermore, either NLRP3 deficiency or neutrophil depletion diminished pro-inflammatory cytokine, IL-1ß, and alleviated blood-brain barrier damage. Overall, the results suggest that NLRP3 exacerbates NETosis in vitro and in the inflamed brain, aggravating neuroinflammation. These findings provide a clue that NLRP3 would be a potential therapeutic target to alleviate neuroinflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...